APPLICATIONS

• Work (Pressure-volume Work)
Let us consider a cylinder which contains one mole of an ideal gas in which a frictionless piston is fitted.

• Work Done in Isothermal and Reversible Expansion of Ideal Gas

 • Isothermal and Free Expansion of an Ideal Gas

For isothermal (T = constant) expansion of an

ideal gas into vacuum ; w = 0 since pex = 0.

Also, Joule determined experimentally that

q = 0; therefore, ∆U = 0

• Enthalpy (H)
It is defined as total heat content of the system. It is equal to the sum of internal energy and pressure-volume work.
Mathematically, H = U + PV

Change in enthalpy: Change in enthalpy is the heat absorbed or evolved by the system at constant pressure.
ΔH = qp
For exothermic reaction (System loses energy to Surroundings),
ΔH and qp both are -Ve.
For endothermic reaction (System absorbs energy from the Surroundings).
ΔH and qp both are +Ve.

Relation between ΔH and Δu.

Let us consider a general reaction A B

Let HA be the enthalpy of reactant A and HB be that of the products.

HA = UA + PVA

HB = UB + PVB

 ΔH = HB - HA

= (UB + PVB) – (UA + PVA)

ΔH = ΔU + PΔV (HB – HA)

 ΔH = ΔU + PΔV

At constant pressure and temperature using ideal gas law,

PVA = nA RT (for reactant A)

PVB = nB RT (for reactant B)

Thus,   PVB – PVA = nB RT - nA RT

= ( nB – nA) RT

PΔV = Δng RT

ΔH = ΔU + Δng RT
• Extensive property
An extensive property is a property whose value depends on the quantity or size of matter present in the system.
For example: Mass, volume, enthalpy etc. are known as extensive property.

• Intensive property
Intensive properties do not depend upon the size of the matter or quantity of the matter present in the system.
For example: temperature, density, pressure etc. are called intensive properties.

• Heat capacity
The increase in temperature is proportional to the heat transferred.
q = coeff. x ΔT
q = CΔT
Where, coefficient C is called the heat capacity.
C is directly proportional to the amount of substance.
Cm = C/n
It is the heat capacity for 1 mole of the substance.

• Molar heat capacity
It is defined as the quantity of heat required to raise the temperature of a substance by 1° (kelvin or Celsius).
• Specific Heat Capacity
It is defined as the heat required to raise the temperature of one unit mass of a substance by 1° (kelvin or Celsius).
q = C x m x ΔT
where m = mass of the substance
ΔT = rise in temperature.

• Relation Between Cp and Cv for an Ideal Gas
At constant volume heat capacity = Cv
At constant pressure heat capacity = Cp
At constant volume qv= CvΔT = ΔU
At constant pressure qp = Cp ΔT = ΔH
For one mole of an ideal gas
ΔH = ΔU + Δ (PV) = ΔU + Δ (RT)
ΔH = ΔU + RΔT
On substituting the values of ΔH and Δu, the equation is modified as

Cp ΔT = CvΔT + RΔT
or Cp-Cv = R