Chapter -3

Pair of Linear Equations in Two Variables

Pair of Linear Equations in Two Variables
Recall, from Class IX, that the following are examples of linear equations in two variables:
2x + 3y = 5
x – 2y – 3 = 0
and    x – 0y = 2,  i.e.,  x = 2s
You also know that an equation which can be put in the form ax + by + c = 0, where a, b and c are real numbers, and a and b are not both zero, is called a linear equation in two variables x and y. (We often denote the condition a and b are not both zero by a2 + b2 ≠ 0). You have also studied that a solution of such an equation is a pair of values, one for x and the other for y, which makes the two sides of the equation equal.
For example, let us substitute x = 1 and y = 1 in the left hand side (LHS) of the equation 2x + 3y = 5. Then
LHS = 2(1) + 3(1) = 2 + 3 = 5,
which is equal to the right hand side (RHS) of the equation. Therefore, x = 1 and y = 1 is a solution of the equation 2x + 3y = 5. Now let us substitute x = 1 and y = 7 in the equation 2x + 3y = 5. Then,
LHS = 2(1) + 3(7) = 2 + 21 = 23 which is not equal to the RHS.
Therefore, x = 1 and y = 7 is not a solution of the equation.
Geometrically, what does this mean? It means that the point (1, 1) lies on the line representing the equation 2x + 3y = 5, and the point (1, 7) does not lie on it. So, every solution of the equation is a point on the line representing it.
In fact, this is true for any linear equation, that is, each solution (x, y) of a linear equation in two variables, ax + by + c = 0, corresponds to a point on the line representing the equation, and vice versa.
Now, consider Equations (1) and (2) given above. These equations, taken together, represent the information we have about Akhila at the fair.
These two linear equations are in the same two variables x and y. Equations like these are called a pair of linear equations in two variables.

Graphical Method of Solution of a Pair of Linear Equations
In the previous section, you have seen how we can graphically represent a pair of linear equations as two lines. You have also seen that the lines may intersect, or may be parallel, or may coincide. Can we solve them in each case? And if so, how? We shall try and answer these questions from the geometrical point of view in this section.
Let us look at the earlier examples one by one.
l In the situation of Example 1, find out how many rides on the Giant Wheel Akhila had, and how many times she played Hoopla.
In Fig. 3.2, you noted that the equations representing the situation are geometrically shown by two lines intersecting at the point (4, 2). Therefore, the point (4, 2) lies on the lines represented by both the equations x – 2y = 0 and 3x + 4y = 20. And this is the only common point.
Let us verify algebraically that x = 4, y = 2 is a solution of the given pair of equations. Substituting the values of x and y in each equation, we get
4 – 2 × 2 = 0 and 3(4) + 4(2) = 20. So, we have verified that x = 4, y = 2 is a solution of both the equations. Since (4, 2) is the only common point on both the lines, there is one and only one solution for this pair of linear equations in two variables.
We can now summarise the behavior of lines representing a pair of linear equations in two variables and the existence of solutions as follows:
(i)  The lines may intersect in a single point. In this case, the pair of equations has a unique solution (consistent pair of equations).
(ii)  The lines may be parallel. In this case, the equations have no solution (Inconsistent pair of equations).
(iii)  The lines may be coincident. In this case, the equations have infinitely many solutions [dependent (consistent) pair of equations].
Let us now go back to the pairs of linear equations formed in Examples 1, 2, and 3, and note down what kind of pair they are geometrically.

(i) x – 2y = 0 and 3x + 4y – 20 = 0                   (The lines intersect)
(ii) 2x + 3y – 9 = 0 and 4x + 6y – 18 = 0        (The lines coincide)
(iii)  x + 2y – 4 = 0 and 2x + 4y – 12 = 0       (The lines are parallel)