1. Introduction-Biodiversity

Diversity in Living Organisms

 

Introduction

  • We all know that there are abundant of living organisms present on the earth. Many organisms are not identical to each other.
  • This variety of living beings present on the earth is called as a Biodiversity.
  • Here is a separate branch of Biology called Taxonomy which identifies, names and classifies different organisms present on the earth.
  • Carolus Linnaeus is known as the Father of the Modern Taxonomy.
  • Binomial nomenclature is the naming of organisms with two names- genus and species.
  • It was first established by Carl Linnaeus and later adopted by all scientists for the universal naming of organisms.
  • The Law of priority is established if the same name is shared by two different species or two different taxa.
  •  Taxonomy deals with the identification, nomenclature, and classification of organisms. 

 

2. Classification System

                                              Classification of Living Things                                                             

•    Classification presented by Aristotle – He classified animals on the basis of their habitats – land, water and air.
•    But it can be easily observed that the animals that live at a particular habitat say land are still so different from each other.
•    Therefore, it was decided to classify the living organisms on the basis of a hierarchy.
•    This hierarchical classification was based on the similarities and dissimilarities in the characteristics of the living organisms.
•    Organisms having similar characteristics were placed in a similar category.

  Why do we need to classify organisms?
1. If we classify organisms into several categories, it will be easier for us to study them.
2. It will help us in understanding how did these organisms evolve.
3. We can also understand how different organisms are related to each other.
4. We can learn why different organisms are found at distinct geographical conditions.

Hierarchy Classification - Formation of Kingdoms
Biologists categorized different organisms into several kingdoms.

Classification

Proposed by

Type of organisms

 

Two kingdom classification

Carolus Linnaeus in 1758

1. Plants 

 

2. Animals

 

Five Kingdom classification

Robert Whittaker in 1959

1. Monera

 

2. Protista 

 

3. Fungi

 

4. Plantae

 

5. Animalia

 

Carl Woese in 1977 

1. Monera

 

(i) Archaea

 

(ii) Eubacteria

 

2. Protista 

 

3. Fungi

 

4. Plantae

 

5. Animalia

 

 

 

 

 
 

 The order of Classification

1. Kingdom
2. Phylum / Division
3. Class
4. Order
5. Family
6. Genus
7. Species
Species is called as the Basic Unit of Classification. Species is a group of organism which can interbreed with each other. The picture below explains how humans are classified in a hierarchical order.


Hierarchical Order of Classifying Humans

Five Kingdom Classifications

 

                                                                                      Five Kingdom Classification

  • The organization inside the cells
    • Prokaryotic Cells – Cells with no definite nucleus
    • Eukaryotic Cells – Cells with a definite nucleus
  • The organization of cells in the body

 

    • Unicellular – Single-celled organisms
    • Multicellular – Multi-cell organisms
  • organisms obtain their food

 

    • Autotrophs – Produce their food on their own 
    • Heterotrophs – Depend on other organisms for their food

 

                                                          Classification of Organisms       

Classification of Organisms

 

Monera 

Protista

Fungi

Plantae

Animalia 

Organization inside the cells

Consists of Prokaryotes.

Eukaryotes – some of them use appendages to move around such as flagella (whip-like structure) and Cilia (hair-like structure)

Eukaryotes

Eukaryotes

Eukaryotes

Organization of cells in the body

Unicellular 

Unicellular 

Initially unicellular. Can become multicellular in later stages of life 

Multicellular

Multicellular

Organisms obtain their food 

Some of them are autotrophs like blue green algae while others are heterotrophs

Both autotrophs and heterotrophs 

Heterotrophs. Most of them are decomposers or may be parasitic.

Autotrophs

Heterotrophs

Presence of cell wall

Some lack a cell wall while others have a cell wall 

Only some have cell wall 

Have cell walls. They are made up of complex sugar called chitin.

Have cell walls made of cellulose.

No cell walls

Example

Blue-green algae, Bacteria, Mycoplasma

Protozoan, Diatoms and Golden algae

Yeast and Mushroom ( Agaricus), Rhizopus ( Bread mould), Pencillium

Flowering plants, moss 

Insects, reptiles 

Archea Kingdom

    The monera kingdom is further classified as Archaea.
    These are microbes (bacteria) that can live in harsh conditions. Since they can live in extreme temperatures, they are also called Extremophiles
    These organisms lack a cell wall. 
    Their cell membrane is made up of lipids.
They are further classified into three categories, based on their habitat:

Halophiles

Thermophiles

Methanogens

These are salt loving bacteria. They live in extremely salty water.

They live in boiling water such as hot springs and volcanoes.

They are found in the guts of animals like cow and sheep. They produce methane gas from their dung. 

 

Who are Saprophytes?
Fungi also called as Saprophytes because they grow over the organic material and survive on them.
What are Symbiotic relationships?
Some species of fungi live in permanent mutually dependent relations with blue-green algae. They are said to have a symbiotic relationship. For Example, Lichens are often found on the bark of the trees.
 

3. Plant Kingdom

Kingdom Plantae

Plant Kingdom

•    Components of Plants – whether they are distinct or not
•    Presence of Special Tissues in plants for the transportation of food and water
•    Presence of Seeds – whether the seeds are present inside the fruits or not.
Classification of plants on the ability to produce seeds -
•    Cryptogams – These plants do not have well developed reproductive organs. The organs cannot be seen clearly as well and appear as if they are hidden. Example are Thallophyte, Bryophyta and Pteridophyte.
•    Phanerogams – These plants have well developed reproductive organs hence they can produce seeds. They are further classified as the ones which have seeds hidden inside fruits or not - Gymnosperms and Angiosperms

 

Criteria

Thallophyta

Bryophyta

Pteridophyta

Components of plants

No distinct components. Undifferentiated Body 

Little differentiated body. Distinct components are present as leaves and stem 

Distinct components are present as roots, leaves and stem

Presence of special tissues- Vascular tissue

No

No

Yes

Presence of seeds

No

No

No

Found in  

Aquatic environment, snow

First terrestrial plants but but need water for sexual reproduction. So called as Amphibian of plant kingdom.

Terrestrial or dry areas 

Example 

Spirogyra, Ulothrix, Volvox

Moss and liverworts

Ferns 

 

 

Gymnosperms

Angiosperms

The ability to produce seeds

Naked seeds

Seeds develop in an organ which then turns into the fruit

Existence

Exist for long time periods, Evergreen 

Grow for varied time periods 

Type

Woody, No flowers

Flowering plants

Meaning 

Gymno – naked 

Angio – Covered 

Sperm – seeds 

Sperma – seeds 

Example

Pines, Deodar

Mustard, Maize

 

What are Cotyledons?

The seed leaves in Angiosperms are called Cotyledons. They turn green on the germination of the seeds. Angiosperms can be divided into two types on the basis of the presence of cotyledons in them-

  • Monocotyledons or monocots
  • Dicotyledons or Dicots

Criteria

Monocotyledons or Monocots

Dicotyledons or Dicots

Cotyledons (Seed Leaves)

Single Cotyledon

Two Cotyledons

Leaves

Long leaves, with parallel veins

Broad leaves with network of veins

Roots

Fibrous

Long taproot

Floral Parts

Multiples of three

Multiples of four or five

Example

Corn, Wheat, Grass

Rose, Sunflower, Lily

4. Animal Kingdom

Kingdom Animalia

Basic Characteristics of the Animalia Kingdom

1. Animals are eukaryotic, multicellular organisms that lack a cell wall.
2. They are heterotrophs therefore they rely on others for food.
3. They have a growth pattern. The adult animals have a specific shape and size.
4. Most of the organisms have well-defined organ systems such as Respiratory System, Digestion System and so on.
5. Most of the animals can move. They aren’t stationary as Plants.
6. Animals have a nervous system which is why they are able to respond to an external stimulus.

Animals are classified on the basis of differences in their body type and design. The body cavity or coelom in animals contains the organs. Based on the presence of body cavity animals can be categorized as:

1. Coelomate – They have true body cavity called Coelom
2. Pseudocoelomate – It means false cavity. They have a body cavity which is filled with fluid
3. Acoelomate – They have no body cavity at all.

1. Phylum - Porifera


Phylum- Porifera

•    Level of Organization – Cells are present
•    Symmetry – Asymmetrical
•    Segmentation – No segments
•    Body Cavity/ Coelom – No
•    Presence of Organs – No
•    Examples – Sycon, Spongilla, Euspongia
•    Other Characteristics-
o    They cannot move and are attached to a support.
o    They have pores in their body
o    These pores form a Canal system through which water and food circulate in the body and waste is removed.

o    They have a skeleton made of spongin protein and calcium carbonate – hard covering on them

2.Phylum - Coelentrata


                                                                          Phylum- Coelenterata 

•    Level of Organization – Tissues, Cells have two layers – so called as Diploblastic Organism
•    Symmetry – Radial
•    Segmentation – No segments
•    Body Cavity/ Coelom – No
•    Presence of Organs – No
•    Examples – Aurelia (Jelly fish) and Adamsia (Sea Anemone)
•    Other Characteristics –
o    Some of them live in colonies - They are physically attached to each other such as Corals
o    Some of them live solitary such as Hydra

3.Phylum - Platyhelminthes


                                                                         Phylum Platyhelminthes

•    Level of Organization – Organs, The cells have three layers – so are called Triploblastic
•    Symmetry – Bilaterally Symmetrical - Left half of the body is identical to the right half
•    Segmentation – No segments
•    Body Cavity/ Coelom – No so called as Acoelomates
•    Presence of Organs – Yes
•    Examples – Taenia solium (Tapeworm), Fasciola hepatica (Liver Fluke)
•    Other Characteristics -
o    They have a flat body and thus are called Flatworms
o    They can be Free-living like Planaria or parasitic.

4. Phylum- Nematode


                                                                               Phylum Nematoda

•    Level of Organization – Tissues so are called Triploblastic
•    Symmetry – Bilaterally Symmetrical - Left half of the body is identical to the right half
•    Segmentation – No segments
•    Body Cavity/ Coelom - False body cavity so called as Pseudocoelomates
•    Presence of Organs – Organ System Level Organisation
•    Examples – Parasitic worms and worms in the intestine
•    Other Characteristics–
o    They are called as Round Worms.
o    Sexual dimorphism visible - Female and male worms are distinct.

  • 5. Phylum Annelida

                                                                           Phylum Annelida

•    Level of Organization – Organ system level, the cells have three layers so called Triploblastic
•    Symmetry – Bilaterally Symmetrical
•    True Segmentation – Present  (organs can be identified separately)
•    Body Cavity/ Coelom – True body cavity so called as Coelomates
•    Presence of Organs – Definite organs 
•    Examples – Leech, Earthworms
•    Other Characteristics –
o    They are found in freshwater and marine water.
o    They have closed Circulatory system.

6. Phylum Arthropoda


                                                                           Phylum Arthropoda

•    Level of Organization – Organ systems
•    Symmetry – Bilaterally symmetrical
•    Segmentation – Present (organs can be identified separately)
•    Body Cavity/ Coelom – True body cavity
•    Presence of Organs – Definite organs 
•    Examples – Prawns and butterflies
•    Other Characteristics
o    They have jointed legs
o    They have an open circulatory system – There are no well-defined blood vessels
o    They have chitinous exoskeleton

 

7. Phylum - Mollusca

 

 

Phylum Mollusca

•    Level of Organization – Organ systems, the cells have three layers– called Triploblastic
•    Symmetry – Bilaterally symmetrical
•    Segmentation – Little segmentation 
•    Body Cavity/ Coelom – Reduced
•    Presence of Organs – Definite organs 
•    Examples – Snails
•    Other Characteristics
o    Body is divided into head, Visceral Mass and Muscular Foot.
o    Some of the molluscs have hard external shell like that of Snails and some have internal reduced shell like that in Octopus.
o    They have an open circulatory system
o    There is a kidney-like organ for excretion