Some Properties of Definite Integrals and evaluation of definite integrals

Example :

Prove that 0π/2 (2log sinx – log sin 2x)dx  = – (π/2) log 2

Solution:

To prove: 0π/2 (2log sinx – log sin 2x)dx  = – (π/2) log 2 

Proof:

Let I = 0π/2 (2log sinx – log sin 2x)dx ………………………….…(1)

By using the property of definite integral

0a f(x) dx = 0a f(a-x) dx 

Now, apply the property in (1), we get

    •  I = 0π/2 2log sin[(π/2)-x] – log sin 2[(π/2)-x])dx 

The above expression can be written as

    •  I = 0π/2 [2log cosx- log sin(π-2x)]dx (Since, sin (90-θ = cos θ)
    •  I = 0π/2 [2log cosx- log sin2x]dx ……………………………………………………..(2)

Now, add the equation (1) and (2), we get

    • I+ I = 0π/2 [(2log sinx – log sin 2x) +(2log cosx- log sin2x)]dx
    • 2I =  0π/2 [2log sinx -2log 2sinx + 2log cos x]dx
    • 2I = 2 0π/2 [log sinx -log 2sinx + log cos x]dx
    •  = 0π/2 [log sinx + log cos x- log 2sinx]dx
    • I = 0π/2log[(sinx. cos x)/sin2x]dx

We know that sin2x= 2 sinx cos x)

    • I = 0π/2log[(sinx. cos x)/(2 sinx cos x)]dx
    • I = 0π/2 log(1/2)dx
    • I = 0π/2 (log1-log 2)dx [Since, log (a/b) = log a- log b]
    • I = 0π/2 -log 2 dx (value of log 1 = 0)

Now, take the constant – log 2 outside the integral,

    • I = -log 2 0π/2dx

Now, integrate the function

    • I = -log 2 [x]0π/2

Now, substitute the limits

    • I = -log 2 [(π/2)-0]
    • I = – log 2 (π/2)
    • I = – (π/2) log 2 = R.H.S

Therefore, L.H. S = R.H.S

Hence. 0π/2 (2log sinx – log sin 2x)dx  = – (π/2) log 2 is proved.

Example: solve 

Solution:

Question. solve 

Solution:

Now applying limits, we get,

2I = π/3 – π/6

2I = (2π – π)/6

2I = π/6

I = π/12

Question.  solve 

Solution:

Now applying limits, we get,

2I = π/3 – π/6

2I = (2π – π)/6

2I = π/6

I = π/12

Question.  solve 

Solution:

Question.  solve 

Solution: