Square Root and Cube Root Of Complex Numbers:

Square roots of a complex number

Let the square root of ib be iy

That is = √[a+ib] = x + iy where x, y  R

a + ib =  ( iy ) = x2  - y2  + i2xy

Equating real and imaginary parts, we get 

x2 - yand 2xy b

(x2  + y2 )=  (x2 - y2 ) 2  + 4x2 y2  = a2  + b2

x2  + y2 =  √[a2+b2], since x2 + y2 is positive 

Solving x2 + ya  and  x2+ y2 =√[a2+b2], we get

https://img.brainkart.com/imagebk40/mjBq5VM.jpg

Since 2xy b  it is clear that both and will have the same sign when is positive, and and have different signs when is negative.

https://img.brainkart.com/imagebk40/J0jC6tQ.jpg

Formula for finding square root of a complex number

https://img.brainkart.com/imagebk40/Ft3ozw0.jpg

Note

https://img.brainkart.com/imagebk40/bJ6xomM.jpg

Example 1.

Find the square root of 6 - 8i.

Solution

We compute |6 - 8i| = √[62 + (-8)2] = 10

and applying the formula for square root, we get

https://img.brainkart.com/imagebk40/vRKGqgU.jpg

Example 2: Determine the square root of complex number 3 + 4i.

Solution: To determine the square root of 3 + 4i, we will determine its magnitude and compare with a + ib.

|3 + 4i| = √(32 + 42) = √(9 + 16) = √25 = 5; a = 3 and b = 4 > 0

Therefore, using formula for square root of complex numbers, we have

√(3 + 4i) = ± (√[√(5 + 3)/2] + i√[√(5 - 3)/2] )

= ± (√(8/2) + i √(2/2))

= ±(√4 + i√1)

= ± (2 + i)

Answer: Hence, √(3 + 4i) = ± (2 + i)

Cube Root of Unity Values:

Suppose the cube root of 1 is “x”,

i .e  .,  3√1 = x.

According to the general cube roots definition,

                            x= 1

    •  x3 – 1 = 0

since (a– b3) = (a – b) ( a2 + ab + b2)

Now, (x– 13) = 0

    • (x – 1)( x2 + x + 1) = 0

Therefore,

 x = 1  Or   ( x2 + x + 1) = 0

    • x=1  or  x = [(-1) ± √(12-4.1.1)]/2
    • x=1 or x= [-1 ± √-3]/2
    • x=1 or  x= -1/2 ± i√(3)/2

Therefore, the three cube roots of unity are:

1,  ω= -1/2+i√(3)/2,  ω2= -1/2 – i√(3)/2

Properties of Cube roots of unity

1) One imaginary cube roots of unity is the square of the other imaginary cube root.

= ¼ [(-1)2 – 2 × 1 × √3 i + ( √3 i)2] = ¼(1 – 2√ 3i – 3) = (-1-√ 3 i) /2

And

= ¼ [(-1)2 + 2 × 1 × √3 i + ( √3 i)2] = ¼(1 + 2√ 3i – 3) = (-1+ √ 3 i) /2

i.e., ω2= (ω2)2

2) If two imaginary cube roots are multiplied then the product we get is equal to 1.

Let’s take ω = (-1 + √3 i ) /2

ω2 = (-1 – √3 i ) /2

Now we will get the product of two imaginary cube roots as ω x ω2 = [(-1 + √3 i ) / 2]x [(-1 – √3 i ) /2]

Or ω3 = ¼[(-1)2 – (√3 i)2]

= ¼[( 1 – 3i2) = ¼ x 4 = 1.

3) As there are three cube roots of unity, their sum is zero, let’s see how

= 1 + [(-1 + √3 i ) /2] + [(-1 – √3 i ) /2]

Or

1 + ω + ω= 1 – ½ + (√3 i ) /2 – ½ – (√3 i ) /2

= 0

4) conjugate of One imaginary cube roots of unity is equal to the other imaginary cube root.

Euler’s form of a Complex Number

e = cos Ɵ + i sin Ɵ

This form makes the study of complex numbers and its properties simple. Any complex number can be expressed as

z = x + iy (Cartesian form)

= |z| [cos Ɵ + I sin Ɵ] (polar form)

= |z| e

De Moivre’s Theorem and its Applications

(a) De Moivre’s Theorem for integral index. If n is a integer, then (cos Ɵ + i sin Ɵ)n = cos (nƟ) + i sin (nƟ)

(b) De Moivre’s Theorem for rational index. If n is a rational number, then the value of or one of the values of

(cosƟ + isinƟ)n is cos (nƟ) + i sin (nƟ).

In fact, if n = p/q where p, q ϵ I, q > 0 and p,q have no factors in common, then (cos Ɵ + i sin Ɵ)n has q distinct values, one of which is cos (nƟ) + i sin (nƟ)

The nth Roots of Unity

By an nth root of unity we mean any complex number z which satisfies the equation zn = 1 (1)

Since an equation of degree n has n roots, there are n values of z which satisfy the equation (1). To obtain these n values of z, we write 1 = cos (2kπ) + I sin (2kπ)

Where k ϵ I and

[using the De Moivre’s Theorem]

Where k = 0, 1, 2, …., n -1.

Note

The values of (cos Ɵ + I sin Ɵ)p/q where p, q ϵ I, q ≠ 0, hcf (p,q) = 1 are given by

Where k = 0, 1, 2, ….., q -1.