Arithmetic Progression (AP) and Arithmetic Mean (AM)

A sequence a1, a2, a3,…, an,… is called arithmetic sequence or arithmetic progression

if an + 1 = an + d, n ΠN, where a1 is called the first term and the constant term d is called

 the common difference of the A.P.

Let us consider an A.P. (in its standard form) with first term a and common

difference d, i.e., a, a + d, a + 2d, ...

The nth term of an AP is given by

nth term = an= a + (n-1) d.

a = the first term, l = the last term, d = common difference,

n = the number of terms.

Sum of nth term:

Sn= the sum to n terms of A.P.

Let a, a + d, a + 2d, …, a + (n – 1) d be an A.P.

Then

l = a + (n – 1) d

Arithmetic mean: Given two numbers a and b. We can insert a number A between them

so that a, A, b is an A.P. Such a number A is called the arithmetic mean (A.M.) of the numbers

 a and b. Note that, in this case, we have

        A – a = b – A

  • A =(a+b)/2

Between any two numbers ‘a’ and ‘b’, n numbers can be inserted such that the resulting sequence is an Arithmetic Progression. A1, A2, A3,……,An be n numbers between a and b such that a, A1 , A2 , A3,……,An, b is in A.P.

Here, a is the 1st term and b is (n+2)th term. Therefore,

b = a + d[(n + 2) – 1] = a + d (n + 1).

Hence, common difference (d) = (b-a)/(n+1)

Now, A1= a+d= a+((b-a)/(n+1))

A2= a+2d = a + ((2(b-a)/(n+1))

An = a+nd= a + ((n(b-a)/(n+1))}

The nth term of a geometric progression is given by a= arn-1

Example: Insert 6 numbers between 3 and 24 such that the resulting sequence is

an A.P.

Solution: Let A1, A2, A3, A4, A5 and A6 be six numbers between 3 and 24 such that

3, A1, A2, A3, A4, A5, A6, 24 are in A.P. Here, a = 3, b = 24, n = 8.

Therefore, 24 = 3 + (8 –1) d, so that d = 3.

Thus A1 = a + d = 3 + 3 = 6; A2 = a + 2d = 3 + 2 × 3 = 9;

A3 = a + 3d = 3 + 3 × 3 = 12; A4 = a + 4d = 3 + 4 × 3 = 15;

A5 = a + 5d = 3 + 5 × 3 = 18; A6 = a + 6d = 3 + 6 × 3 = 21.

Hence, six numbers between 3 and 24 are 6, 9, 12, 15, 18 and 21.

simple properties of an A.P. :

(i) If a constant is added to each term of an A.P., the resulting sequence is

also an A.P.

(ii) If a constant is subtracted from each term of an A.P., the resulting

sequence is also an A.P.

(iii) If each term of an A.P. is multiplied by a constant, then the resulting

sequence is also an A.P.

(iv) If each term of an A.P. is divided by a non-zero constant then the

resulting sequence is also an A.P.

Example 1. Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.

Solution:

Let’s take a and d to be the first term and the common difference of the A.P. respectively.

We know that, the kth term of an A. P. is given by

ak = a + (k –1) d

So, am + n = a + (m + n –1) d

And, am – n = a + (m – n –1) d

am a + (m –1) d

Thus,

am + n + am – n  = a + (m + n –1) d + a + (m – n –1) d

= 2a + (m + n –1 + m – n –1) d

= 2a + (2m – 2) d

= 2a + 2 (m – 1) d

=2 [a + (m – 1) d]

= 2am

Therefore, the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term

Example 2. If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.

Solution:

Let’s consider the three numbers in A.P. as a – da, and a + d.

Then, from the question we have

(a – d) + (a) + (a + d) = 24 … (i)

3a = 24

 a = 8

And,

(a – da (a + d) = 440 … (ii)

(8 – d) (8) (8 + d) = 440

(8 – d) (8 + d) = 55

64 – d2 = 55

d2 = 64 – 55 = 9

 = ± 3

Thus,

When d = 3, the numbers are 5, 8, and 11 and

When d = –3, the numbers are 11, 8, and 5.

Therefore, the three numbers are 5, 8, and 11.