Irrational Numbers

We know that a number which cannot be written in the form of ,https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_65af025c.gif where p and q are integers and q ≠ 0, is known as an irrational number.

For example: all numbers of the form ,https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m430aac4e.gif where p is a prime number such as etc., https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m7a2a72bb.gifare irrational numbers.

How can we prove that these are irrational numbers?

We can prove this by making use of a theorem which can be stated as follows.

If p divides a2, then p divides a (where p is a prime number and a is a positive integer)”.

So go through the given video to understand the application of the above stated property.

Similarly, we can prove that square roots of other prime numbers like ,https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m2ba2a852.gif etc. are irrational numbers.

Besides these irrational numbers, there are some other irrational numbers like etc.https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_37a6f831.gif

We can also prove why these numbers are irrational. Before this, let us first see what happens to irrational numbers, when we apply certain mathematical operations on them.

We will now prove that https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_370ecc6f.gif is irrational.

We know that https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m74e5c629.gif is irrational (as proved before).

Now, the multiplication of a rational and an irrational number gives an irrational number. Therefore, https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m69aacebe.gif is an irrational number.

Let us now try to understand the concept further through some more examples.

Example 1: Prove that  https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m40fe6a3.gifis irrational. Solution:

Let us assume thathttps://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m40fe6a3.gif is not irrational, i.e.https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m40fe6a3.gif is a rational number.

Then we can write ,https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_7a3fdcf1.gif where a and b are integers andb ≠ 0.

Let a and b have a common factor other than 1.

After dividing by the common factor, we obtain

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_3244d9bd.gif, where c and d are co-prime numbers.

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_72da52ee.gif

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m6f130f1d.gif

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_1bf3bd84.gif

As c, d and 2 are integers, https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m2f1cbb58.gifand https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_21c6157c.gifare rational numbers.

Thus,https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_4f6efde0.gif is rational.

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m4bc7e987.gifis rational as the difference of two rational numbers is again a rational number.

This is a contradiction ashttps://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_45fefb98.gif is irrational.

Therefore, our assumption that https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m40fe6a3.gifis rational is wrong.

Hence, https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m40fe6a3.gifis irrational.

Example 2: Prove that https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m1c9f4a1d.gifis irrational.

Solution:

Let us assume https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m1c9f4a1d.gif is rational. Then, we can write

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m1495e0d7.gif,

where a and b are co-prime and b ≠ 0.

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_26104d17.gif

Now, as a and b are integers,https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m23338b16.gif is rational or https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_25487305.gifis a rational number.

This means thathttps://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_6af01362.gif is rational.

This is a contradiction ashttps://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_6af01362.gif is irrational.

Therefore, our assumption that https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m1c9f4a1d.gif is rational is wrong.

Hence, https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/157/414/454/10.1.1.3.1_ok_html_m1c9f4a1d.gifis an irrational number.

Decimal Expansions of Rational Numbers

The Need for Converting Rational Numbers into Decimals

A carpenter wishes to make a point on the edge of a wooden plank at 95 mm from any end. He has a centimeter tape, but how can he use that to mark the required point?

https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m348b9efc.png

Simple! He should convert 95 mm into its corresponding centimeter value, i.e., 9.5 cm and then measure and mark the required length on the wooden plank.

This is just one of the many situations in life when we face the need to convert numbers into decimals. In this lesson, we will learn to convert rational numbers into decimals, observe the types of decimal numbers, and solve a few examples based on this concept.

Know More

Two rational numbers https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m1e789668.gifandhttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m21470f1.gif are equal if and only if ad = bc.

Take, for example, the rational numbers https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m44340ee8.gifand https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_6176a5ee.gif. Let us see if they are equal or not. Here, a = 2, b = 4, c = 3 and d = 6

Now, we have:

ad = 2 × 6 = 12

bc = 4 × 3 = 12

Since ad = bc, we obtainhttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m44340ee8.gif = .https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_6176a5ee.gif

We know that the formhttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_2dc453e6.gif represents the division of integer p by the integer q. By solving

this division, we can find the decimal equivalent of the rational number https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_2dc453e6.gif . Now, let us convert the numbershttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_1a79aa93.gif , https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_3babc602.gifandhttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_7eb21b54.gif into decimals using the long division method.

https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_2d9c36df.gif https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m239cf0bc.gif https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m6753297c.gif

While the remainder is zero in the division of 5 by 8, it is not so in case of the other two divisions. Thus, we can get two different cases in the decimal expansions of rational numbers.

Observing the Decimal Expansions of Rational Numbers

We can get the following two cases in the decimal expansions of rational numbers.

Case I: When the remainder is zero

In this case, the remainder becomes zero and the quotient or decimal expansion terminates after a finite number of digits after the decimal point. For example, in the decimal

expansion of , https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_1a79aa93.gifwe get the remainder as zero and the quotient as 0.625.

Case II: When the remainder is never zero

In this case, the remainder never becomes zero and the corresponding decimal expansion

is non-terminating. For example, in the decimal expansions ofhttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_3babc602.gif andhttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_7eb21b54.gif , we see that the remainder never becomes zero and their corresponding quotients are non-terminating decimals.

When we divide 4 by 3 and 2 by 7, we get 1.3333… and 0.285714285714… as the respective quotients. In these decimal numbers, the digit ‘3’ and the group of digits

‘285714’ get repeated. Therefore, we can writehttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m1e407e7a.gif andhttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m48bdfe35.gif

Here, the symbol https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_6700b35a.gif indicates the digit or group of digits

that gets repeated.

Solved Examples

Example 1: Write the decimal expansion of https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m1ac2651a.gifand find if it is terminating or non- terminating and repeating.

Solution:

Here is the long division method to find the decimal expansion of .https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_54d26d49.gif

https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m65d5dfec.gif

Hence, the decimal expansion ofhttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_54d26d49.gif is 49.48. Since the remainder is obtained as zero, the decimal numberis terminating.

Example 2: Write the decimal expansion of https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m69225f9a.gifand find if it is terminating or non- terminating and repeating.

Solution:

Here is the long division method to find the decimal expansion of .https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_3f6105c8.gif

https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m13244a0e.gif

Hence, the decimal expansion ofhttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_3f6105c8.gif is 87.33 Since the remainder 9 is obtained again

and again, the decimal numberis non-terminating and repeating. The decimal number can also be written as .https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_76fffb19.gif

Medium

Example 1: Find the decimal expansion of each of the following rational numbers and write the nature of the same.

1.https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m1604d276.gif

2.https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m37758a8a.gif

3.https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m4dab7ceb.gif

4.https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_1885b01b.gif

Solution:

https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_5dbb3d93.gif

We have https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_74e9744c.gif= 0.64356435... =https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_7d4230dc.gif

The group of digits ‘6435’ repeats after the decimal point. Hence, the decimal expansion of the given rational number is non-terminating and repeating.

https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_35c8f5dd.gif

We havehttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m642729bb.gif = 2.3075

Hence, the given rational number has a terminating decimal expansion.

https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m6a80e320.gif

We havehttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m496e0514.gif = 0.3737... =https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_m58bcbf66.gif

The pair of digits ‘37’ repeats after the decimal point. Hence, the decimal expansion of the given rational number is non-terminating and repeating.

https://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_752ba0af.gif

We havehttps://img-nm.mnimgs.com/img/study_content/lp/100/100/1/3132/7995/29557/Chap-1_Lesson3_Aakash_Lang.edited_html_67934006.gif = 0.67

Hence, the given rational number has a terminating decimal expansion.

Terminating and Non-terminating Repeating Decimal Expansions of Rational Numbers

We can find the decimal expansion of rational numbers using long division method.

However, it is possible to check whether the decimal expansion is terminating or non- terminating without actually carrying out long division also.

Let us start by taking a few rational numbers in the decimal form.

(a)

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_4551c836.gif

(b)

0.275https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_4e8b3aff.gif

On prime factorizing the numerator and the denominator, we obtain

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m12c13908.gif

Can you see a pattern in the two examples?

We notice that the given examples are rational numbers with terminating decimal expansions. When they are written in the https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_65af025c.gif form, where p and q are co-prime

(the HCF of p and q is 1), the denominator, when written in the form of prime factors, has 2 or 5 or both.

The above observation brings us to the given theorem.

If x is a rational number with terminating decimal expansion, then it can be expressedin the form, where p and q are co-prime (the HCF of p and q is 1) and the prime factorisation of q is of the form 2n5m, where n and m are non-negative integers.

Contrary to this, if the prime factorisation of q is not of the form 2n5m, where n and m are non-negative integers, then the decimal expansion is a

non-terminating one.

Let us see a few examples that will help verify this theorem.

(a)https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m2706fbf1.gif

(b)https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m13478690.gif

(c) https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m645f688c.gif

(d) https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m116a18b.gif

Note that in examples (b) and (d), each of the denominators is composed only of the prime factors 2 and 5, because of which, the decimal expansion is terminating. However, in examples (a) and (c), each of the denominators has at least one prime factor other than 2 and 5 in their prime factorisation, because of which, the decimal expansion is non- terminating and repetitive.

To summarize the above results, we can say that:

Let us solve a few examples to understand this concept better.

Example 1: Without carrying out the actual division, find if the following rational numbers have a terminating or a non-terminating decimal expansion.

(a)https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m2c56143a.gif

(b) https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m527482e2.gif 

Solution:

(a)https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m3f73fcca.gif

As the denominator can be written in the form 2n5m, where n = 6 and m = 2 are non-negative integers, the given rational number has a terminating decimal expansion.

(b)https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m389bf3c9.gif

As denominator cannot be written in the form 2n5m, where n and m are non-negative integers, the given rational number has a non-terminating decimal expansion.

Example 2: Without carrying out the actual division, find if the expression https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m35df680e.gif has a terminating or a non-terminating decimal expansion.

Solution:https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m35df680e.gif=https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_147e03c9.gif

As the denominator can be written in the form 2n5m, where n = 7and m = 0 are non-negative integers, the given rational number has a terminating decimal expansion.

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_m7285144d.gif

https://img-nm.mnimgs.com/img/study_content/lp/1/10/9/128/158/415/455/10.1.1.4.1_GPL_SA_KG_SNK_html_3f9be989.gif

Hence, 5.5859375 is the decimal expansion of the given rational number.