Revisiting Rational Numbers and Their Decimal Expansions
In Class IX, you studied that rational numbers have either a terminating decimal
expansion or a non-terminating repeating decimal expansion. In this section, we are
going to consider a rational number, say ( 0)
p
q
q
¹ , and explore exactly when the
decimal expansion of
p
q
is terminating and when it is non-terminating repeating
(or recurring). We do so by considering several examples.
Let us consider the following rational numbers :
(i) 0.375 (ii) 0.104 (iii) 0.0875 (iv) 23.3408.
Now (i)
3
375 375
0.375
1000 10
= = (ii)
3
104 104
0.104
1000 10
= =
(iii)
4
875 875
0.0875
10000 10
= = (iv)
4
233408 233408
23.3408
10000 10
= =
As one would expect, they can all be expressed as rational numbers whose
denominators are powers of 10. Let us try and cancel the common factors between
the numerator and denominator and see what we get :
(i)
3
3 3 3 3
375 3 5 3
0.375
10 2 5 2
×
= = =
×
(ii)
3
3 3 3 3
104 13 2 13
0.104
10 2 5 5
×
= = =
×
(iii)
4 4
875 7
0.0875
10 2 5
= =
×
(iv)
2
4 4
233408 2 7 521
23.3408
10 5
× ×
= =
Do you see any pattern? It appears that, we have converted a real number
whose decimal expansion terminates into a rational number of the form ,
p
q
where p
and q are coprime, and the prime factorisation of the denominator (that is, q) has only
powers of 2, or powers of 5, or both. We should expect the denominator to look like
this, since powers of 10 can only have powers of 2 and 5 as factors.
Even though, we have worked only with a few examples, you can see that any
real number which has a decimal expansion that terminates can be expressed as a
rational number whose denominator is a power of 10. Also the only prime factors of 10
are 2 and 5. So, cancelling out the common factors between the numerator and the
denominator, we find that this real number is a rational number of the form ,
p
q
where
the prime factorisation of q is of the form 2n5m, and n, m are some non-negative integers.
Let us write our result formally:
2018-19
16 MATHEMATICS
Theorem 1.5 : Let x be a rational number whose decimal expansion terminates.
Then x can be expressed in the form ,
p
q
where p and q are coprime, and the
prime factorisation of q is of the form 2n5m, where n, m are non-negative integers.
You are probably wondering what happens the other way round in Theorem 1.5.
That is, if we have a rational number of the form ,
p
q
and the prime factorisation of q
is of the form 2n5m, where n, m are non negative integers, then does
p
q
have a
terminating decimal expansion?
Let us see if there is some obvious reason why this is true. You will surely agree
that any rational number of the form ,
a
b
where b is a power of 10, will have a terminating
decimal expansion. So it seems to make sense to convert a rational number of the
form
p
q
, where q is of the form 2n5m, to an equivalent rational number of the form ,
a
b
where b is a power of 10. Let us go back to our examples above and work backwards.
(i)
3
3 3 3 3
3 3 3 5 375
0.375
8 2 2 5 10
×
= = = =
×
(ii)
3
3 3 3 3
13 13 13 2 104
0.104
125 5 2 5 10
×
= = = =
×
(iii)
3
4 4 4 4
7 7 7 5 875
0.0875
80 2 5 2 5 10
×
= = = =
× ×
(iv)
2 6
4 4 4 4
14588 2 7 521 2 7 521 233408
23.3408
625 5 2 5 10
× × × ×
= = = =
×
So, these examples show us how we can convert a rational number of the form
p
q
, where q is of the form 2n5m, to an equivalent rational number of the form ,
a
b
where b is a power of 10. Therefore, the decimal expansion of such a rational number
terminates. Let us write down our result formally.
Theorem 1.6 : Let x =
p
q
be a rational number, such that the prime factorisation
of q is of the form 2n5m, where n, m are non-negative integers. Then x has a
decimal expansion which terminates.
2018-19
REAL NUMBERS 17
We are now ready to move on to the rational numbers
whose decimal expansions are non-terminating and recurring.
Once again, let us look at an example to see what is going on.
We refer to Example 5, Chapter 1, from your Class IX
textbook, namely,
1
7
. Here, remainders are 3, 2, 6, 4, 5, 1, 3,
2, 6, 4, 5, 1, . . . and divisor is 7.
Notice that the denominator here, i.e., 7 is clearly not of
the form 2n5m. Therefore, from Theorems 1.5 and 1.6, we
know that
1
7
will not have a terminating decimal expansion.
Hence, 0 will not show up as a remainder (Why?), and the
remainders will start repeating after a certain stage. So, we
will have a block of digits, namely, 142857, repeating in the
quotient of
1
7
.
What we have seen, in the case of
1
7
, is true for any rational number not covered
by Theorems 1.5 and 1.6. For such numbers we have :
Theorem 1.7 : Let x =
p
q
be a rational number, such that the prime factorisation
of q is not of the form 2n5m, where n, m are non-negative integers. Then, x has a
decimal expansion which is non-terminating repeating (recurring).
From the discussion above, we can conclude that the decimal expansion of
every rational number is either terminating or non-terminating repeating.